Eu, nu ir gan ziepes. Arvien vairāk viss liecina par to, ka tomēr mēs dzīvojam matriksā.
Quantum mechanics is widely accepted by physicists, but is full of apparent paradoxes, which made Einstein deeply uncomfortable and have never been resolved. For instance, you cannot ask what the spin of a particle was before you made an observation of it - quantum mechanics says the spin was undetermined. And you cannot predict the outcome of an experiment; you can only estimate the probability of getting a certain result.
"Quantum mechanics works wonderfully well, but it's not complete," says Gerard 't Hooft of Utrecht University in the Netherlands, who won the Nobel prize for physics in 1999 for laying the mathematical foundations for the standard model of particle physics. One major reason why many physicists, including 't Hooft, yearn for a deeper view of reality than quantum mechanics can offer is their failure so far to unite quantum theory with general relativity and its description of gravity, despite enormous effort. "A radical change is needed," says 't Hooft.
For more than a decade now, 't Hooft has been working on the idea that there is a hidden layer of reality at scales smaller than the so-called Planck length of 10-35 metres. 't Hooft has developed a mathematical model to support this notion. At this deeper level, he says, we cannot talk of particles or waves to describe reality, so he defines entities called "states" that have energy. In his model, these states behave predictably according to deterministic laws, so it is theoretically possible to keep tabs on them.
However, the calculations show that individual states can be tracked for only about 10-43, after which many states coalesce into one final state, which is what creates the quantum mechanical uncertainty. Our measurements illuminate these final states, but because the prior information is lost, we can't recreate their precise history.
(c) šeit
Quantum mechanics is widely accepted by physicists, but is full of apparent paradoxes, which made Einstein deeply uncomfortable and have never been resolved. For instance, you cannot ask what the spin of a particle was before you made an observation of it - quantum mechanics says the spin was undetermined. And you cannot predict the outcome of an experiment; you can only estimate the probability of getting a certain result.
"Quantum mechanics works wonderfully well, but it's not complete," says Gerard 't Hooft of Utrecht University in the Netherlands, who won the Nobel prize for physics in 1999 for laying the mathematical foundations for the standard model of particle physics. One major reason why many physicists, including 't Hooft, yearn for a deeper view of reality than quantum mechanics can offer is their failure so far to unite quantum theory with general relativity and its description of gravity, despite enormous effort. "A radical change is needed," says 't Hooft.
For more than a decade now, 't Hooft has been working on the idea that there is a hidden layer of reality at scales smaller than the so-called Planck length of 10-35 metres. 't Hooft has developed a mathematical model to support this notion. At this deeper level, he says, we cannot talk of particles or waves to describe reality, so he defines entities called "states" that have energy. In his model, these states behave predictably according to deterministic laws, so it is theoretically possible to keep tabs on them.
However, the calculations show that individual states can be tracked for only about 10-43, after which many states coalesce into one final state, which is what creates the quantum mechanical uncertainty. Our measurements illuminate these final states, but because the prior information is lost, we can't recreate their precise history.
(c) šeit